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Abstract— Human-to-robot handover is a key capability of
service robots and human-robot interaction. Recent work takes
advantage of existing hand and object segmentation, and pose
estimation algorithms to generate grasps. End-to-end grasping
directly from sensor data without object models has made
tremendous progress in logistic tasks, but has not been used
for human-to-robot handover. However, both approaches aim
for grasping without inducing harm, but neither consider
which types of grasps may be intrusive to human users.
We present our end-to-end 6DoF grasp choice for human-to-
robot handover. We first leverage existing end-to-end grasping
for the network backbone, and then finetune for preferred
grasps using deep reinforcement learning. Comprehensive eval-
uations are carried out against various baselines using multi-
stage hand and object prediction and subsequent planning.
We show that the proposed approach was more robust to
partial occlusions, and executed human preferred 6DoF grasps
without hard-coding the correspondence of hand grasp clas-
sification. A dataset of end-to-end grasping and trajectories
for human-to-robot handover and all pretrained models are
available at https://arg-nctu.github.io/projects/
socially-aware-handover.html.

I. INTRODUCTION

Human-to-robot handovers, involving the transfer of an
object from a human giver to a robot receiver, are funda-
mental capabilities that allow for service robots in our daily
lives. There has been increasing interest in studying human
experiences [1], [2], predicting human hand poses or object
affordance for grasping selections [3], [4], and expanding the
types of handovers for a wider range of objects [4], [5] in
order to improve human-to-robot handover.

Grasp choice may be influenced by several constraints,
such as object shape, task requirements, gripper types, and
social convention [2]. By observing and analyzing the hu-
man grasp, the robot grasp could be adapted accordingly.
Therefore, previous works tend to utilize human grasp clas-
sification [4] or hand pose estimation, in order to generate
a corresponding grasp pose.

Several deep learning-based techniques have been applied
in handover pipelines, including object detection [6], and
object pose estimation [7].In general, human-to-robot han-
dovers are successful as long as the objects and hands are
accurately tracked.

Recent advances in end-to-end grasping prediction have
shown promising progress. [8] Used a ResNet-101 backbone
end-to-end network to generate the affordance map for either
suction or two-finger parallel grippers in heavily cluttered
scenarios during the Amazon Robotics Competition. The
series of DexNet models [9]–[12] used large amounts of
simulation-only datasets with thousands of objects to train

Fig. 1. Our approach allows human-to-robot handovers using end-to-end
grasp choice, learning-based algorithms. When the program is executed,
the agent will generate an action. Through the end-to-end approach we
proposed, there is a 93.5% probability that the target object can be grasped.
In addition, we also incorporated reinforcement learning rewards, so that
the agent can learn human grasping preferences to make the robot more
anthropomorphic.

the end-to-end CNN networks. Although the above research
was successful in overcoming occlusions in cluttered sce-
narios, this has not yet been used to tackle input images
involving objects that are held in human hands, nor has their
been consideration of what grasp may be intrusive for users
during human-to-robot handovers.

Compared with other existing end-to-end grasping net-
works [8], [12]–[14], human-to-robot handovers requires the
following adaptations. 1) Background: In previous works,
the objects are placed in tote or on tables and therefore the
backgrounds are often relatively plain. It has been shown that
background may largely affect deep network performance,
such as replacing the background by a checkerboard [15].
[5] modified the grasp prediction network GG-CNN [16] by
adding a planar surface background. 2) Occlusion: Given
that the target object is held by a human hand, there are
a certain number of occlusions that may affect the success
rate of segmentation and pose estimation of the object and
the hand. In prior end-to-end grasping work, grasp selection
networks are usually programmed to pick the objects from
the top, and thus are not occluded by other objects in
cluttered scenes. Each object is then removed from the
tote one by one. In this context, the grasping behavior
only has to deal with background clutter, but not occlusion
challenges. In contrast, depending on how the object is held
in the human’s hand, occlusion may be higher and thus



existing segmentation and pose estimation algorithms may
fail. Therefore, although there are only two objects (a single
target object and the human hand) in the input images, the
occlusion challenge remains. 3) Planar vs. 6 DoF Grasping:
In prior research, end-to-end grasping is usually formulated
as planar grasping [17], whereby a grasping point (x,y) and
an angle θ of a two-finger gripper are generated from an
input image. However, human-to-robot handovers involve
grasping in 3D-space, meaning that there are several grasping
and trajectory solutions. 4) Grasp Choice: Human grasp
types are known to associate with different robot grasp during
handover [2]. Previous work [4] needs to classify human
grasp so that the hard-coded robot grasp could be carried
out. Learning for such associations in a data-driven manner
is not yet studied in previous end-to-end grasping work.

In this paper, we propose to address the problem of grasp
poses in human-to-robot handovers through an end-to-end
network. The contributions of our work are as follows:
• An end-to-end grasping approach of affordance pre-

diction for human-to-robot handovers. Building upon
the work in [8], we collected and manually labelled a
handover dataset, and trained a model taking RGB-D
images as inputs and generating an affordance map for
grasping. In contrast to existing methods, this approach
bypasses the separate stages of predicting the pose of
the hand and the object. This is especially useful when
more than 40% of the target object is occluded, and we
systematically analyzed the grasping success rate across
several baseline methods.

• A data-driven approach for learning grasp choice
without hand pose nor hard-coded human-robot
grasp associations. Given that a grasp choice is affected
by object, task, gripper, or social convention constraints,
we learn the implicit associations directly from image
inputs. We trained grasping behaviors based on human
feedback as rewards through deep RL.

• An open dataset for human-to-robot handover.
The data and pretrained weights of the above end-to-
end grasping follow widely used end-to-end grasping
in [18]. We also provide the grasp choice of human
annotations for deep RL. Both are available open access
for reproducing this study.

II. RELATED WORK

A. Hand and Object Pose Estimation

Recent state-of-the-art hand and object pose estimation
methods have been developed using a variety of real or
simulated datasets. MANO (hand Model with Articulated
and Non-rigid defOrmations) [19] was trained on 1,000
high-resolution 3D scans of hands. DOPE (Deep Object
Pose Estimation) [20] took advantage of synthetic data for
training deep neural networks for YCB household objects.
This demonstrated that the combined domain randomized
and photorealistic synthetic data closed the reality gap in
the context of 6-DoF pose estimation of known objects
from a single RGB image. Moreover, ObMan [21] leveraged

a large-scale synthetic dataset for joint reconstructions of
hands and objects. With manipulation constraints, a model
exploited plausible hand-object constellations. We will use
these prior methods as our baselines, and systematically
evaluate scenarios that include objects with high rates of
occlusions.

B. Handovers by Estimating Hand and Object Poses

Prior research on human-to-robot handovers have used
establishing hand and object detection and pose estimation
algorithms. Yang et al. [3] trained a deep neural network
using PointNet++ [7] to classify point clouds around human
hands into one of seven pre-defined grasping categories. A
subsequent motion plan was then carried out to complete
the handovers. Consequently, [4] further tackled the chal-
lenges of unseen objects. Closed-loop designs refined the
tracking of segmented hands and objects over time. A grasp
selection model based on the 6-DoF GraspNet [16] was
then performed. Similarly, Rosenberger and colleagues [5]
proposed a method for grasping generic objects, using an
YOLO V3 object detector [6] trained on 80 object categories
from the COCO [22] dataset. They simultaneously predicted
hand and body segmentation, which were then excluded from
a modified GG-CNN [14] model to generate safe grasps. Our
work is different from this prior work, incorporating a data-
driven end-to-end grasping model that does not require hand
and object detection and pose estimation algorithms.

C. End-to-end Grasping

End-to-end grasping has attracted much attention. [17]
used a real robot to collect a dataset of 50k grasps in a
self-supervised fashion, and trained a deep neural network
classifier to predict grasp success. [23] further collected a
grasping dataset with more variability by using images from
individual’s homes instead of only in lab settings using a low
cost robotic platform. DexNet [9]–[12] is a series of end-to-
end approaches that used a 6.7 million dataset which was
generated entirely through simulation. The proposed GQ-
CNN method evaluated the quality of each grasp configu-
ration from the previous step [0,1], and outputs the highest
quality grasp configuration. In contrast, [24] used human
annotations for suction grasping and parallel grasping. They
used a ResNet-101 backbone network to implement an
end-to-end affordance prediction method, without any pre-
processing of object segmentation and classification.

Among these methods, self-supervised learning may not
be suitable for handovers which include humans. Although
simulation offers an abundance of data, it has been known to
fall short in certain application setups due to the domain gap
between synthetic and real data. How to incorporate human
knowledge into the grasping algorithms remains an open
question. In our work, the affordance prediction method [24]
for human-to-robot handovers was adapted using human
annotations.



III. PROBLEM FORMULATION

A. End-to-end Grasping using Affordance Prediction

We follow the affordance prediction [24] formulated as
planar grasping. During pre-processing we filter backgrounds
that have a depth greater than 75 cm. Given RGB-D images
(IRGB and depth IDepth) of the scene, a fully convolutional
network is trained to infer the affordances (IA f f ordance) across
a dense pixel-wise sampling of end-effector orientations and
locations. Each pixel correlates to a different position by
which to execute the grasping. By rotating the same input
and running inference for N times, where N was set to 8
for 0, 30, 45, 60, 90, 120, 135, and 150 degrees, the largest
area among the 224× 224×N affordance map is selected
as the grasp by a two-finger parallel gripper. We also map
the grasp pose (OXGGrasp ) from the camera frame to a world
frame (W PPi = W XC CPPi ). We then use MoveIt [25], open-
loop motion planning in real-time, to execute the grasping.

B. Learning Grasp Choice using Deep RL

Through pixel-wise affordance prediction, we can predict
the planar graspable positions and gripper angles. However,
grasp choice may be influenced by object or human givers’
different preferences when interacting with the robot. We
modify the training process to include the human in the loop
through deep reinforcement learning.

We formulate our task as a standard Markov Decision
Process (MDP), which is defined as M = {S,A,R,P,γ}.
We reuse the pre-trained weight obtained in our affordance
prediction method, which share the RGB and depth image
inputs as the state S. The action A ∈ R224×224×N×M is a
discrete space that maps to the 224×224 grasping position,
N as different orientations of the end effector, and M as
the number of 6DoF grasping. R is the reward signal, and
P is the transition function to the next state, p(st+1|st ,at),
finally the γ is a discount factor for future value estimation.
The objective is to find a state-action value estimator using
rewards as a guide. Here we transform our value estimator
into N×M affordance maps, and the largest area is selected
for the 6DoF grasping task.

IV. PROPOSED METHODS

Fig. 2. Handover Dataset: line annotation example.

Fig. 3. Handover Dataset: (1) water cup, (2) small medicine cup, (3)
medicine bottle, (4) medicine box, (5) SPAM, (6) banana, (7) lemon, (8)
strawberry, (9) peach, (10) pear, (11) plum, (12) mustard, (13) sugar. Fruit
objects were plastic.

TABLE I
COMPARISON TABLE OF THREE DATASETS OF HEROS. HEROS-AF:
SUBSET FOR PREDICTING AFFORDANCE; HEROS-CH: SUBSET FOR

LEARNING GRASP CHOICE; HEROS-TR: SUBSET FOR STUDYING

TRAJECTORIES OF HUMAN DEMONSTRATIONS.

HERoS-Af HERoS-Ch HERoS-Tr

Type RGB-D RGB-D RGB-D, Joint-state
Frame 1,368 1,127 26,693
Label Pixel-wise Reward Sparse Reward
Note 18,868 labels 1,127 feedback 1000 trajectories

as grasps as reward from human demo

A. The HERoS Dataset

We collected a dataset including 9 YCB [26] objects
and 4 additional objects — water cup, small medicine cup,
medicine box, and a medicine bottle, shown in Fig. 3.
We used the Intel D435 RGBD camera mounted at the
end-effector of ViperX300s on Jackal UGV. We parsed the
recorded ROS bag files into RGB images and depth images,
which were 640× 480 in resolutions. We collected data in
different scenes and angles of light sources, and held objects
in various postures with both the left and right hands.

1) Human Labelling for Affordance: We labelled the RGB
images using the LabelMe [27] tool. The output size is also a
640×480 densely labeled pixel-wise map. Each pixel value
of the pixel-wise map was normalized to between 0 and 1 in
the form of a heat map. We followed the dataset in [8] and
asked human annotators to label a line of where a two-finger
gripper could grasp the object without touching the human
hand. Similar to the labelling in [8], one object was densely
labelled with the graspable positions and angles displayed
in green, shown in Fig. 2. Each object included around 100
images, resulting in 1,368 RGB-D images; there were 1,368
annotations with 18,868 possible grasps (green lines).

2) Human Feedback for Grasp Choice: We collected an
offline training replay buffer that contained medical items
and 9 additional YCB [26] objects that were shown in Fig. 3



, a total of 13 objects with 1127 transitions, whereby a
transition can be defined by a tuple {St , St+1, at , r, E}
of the initial state, the state after an action (each state is
a pair of RGB and Depth images), the action (position and
orientation), reward and an indicator of success. We labelled
the indicator of success as either True or False and the reward
as either 5 or -5, depending on whether the transition is a
successful grasp or not.

We hold the objects at four angles (90, 0, -45, 45 degrees)
to the horizontal ground for our model to predict an action
based on this. If the transition is successful, the states are
one pair of images that contain the held object and another
without. If the transition fails, the states are two pairs of
images which both have the held object. There were 1127
labelled image/action pairs.

We also collected a subset of human demonstration trajec-
tories and evaluate if grasp choice affects handover trajecto-
ries.

B. End-to-end Grasping by Affordance Prediction

In order to accomplish the handover task, we needed to
obtain the 3D position of the grasp point, which is defined
as the point where the object can be stably grasped without
touching the human’s fingers. Through the labelled dataset,
the model learned whether each pixel of the RGB-D image
is a point that can be grasped.

1) Model Architecture: In this paper, we used ResNet-101
[28] as the main network architecture of HERoS and used
residual networks to solve the degradation of deep networks
and reduce the amount of computation. Although this dataset
is considered small for training a deep network, using ResNet
pre-trained on ImageNet [29] is sufficient for finetuning
our architecture. The architecture is a dual-stream network.
The RGB image (RGB, 3 channels) and the depth image
through cloning are normalized by subtracting the mean
and dividing by the standard deviation (DDD, 3 channels)
and are sent into the ResNet-101 network separately. The
depth is cloned across channels to use ResNets pre-trained
weights from ImageNet on 3-channel (RGB) color images
to avoid non-convergence due to the small dataset. Finally,
we concatenated the two ResNet-101 outputs (RGB and
depth), followed by 3 additional spatial convolution layers to
merge the features. We then spatially up-sampled the outputs
bilinearly and soft- maxed to output two pixel-wise layers
(non-grasping and graspable layers) to represent the inferred
affordances.

2) Model Training: We post-processed the captured depth
information to make the background such that depths greater
than 75cm have the same depth value and become a flat
surface to reduce noise and increase prediction accuracy.

We flipped the RGB images, depth images, and labelled
images horizontally and vertically to increase diversity. We
used cross-entropy for the loss function, a batch size of 10, a
fixed learning rate of 10−3, and a momentum of 0.99 to train
HERoS through stochastic gradient descent. Our model was
trained in PyTorch using NVIDIA RTX2080 on Intel Core
i5-9400F. Total training time took approximately one hour.

3) Motion Planning: This module translates the output
of the target pose into joint and gripper actions by running
the Moveit [25] path planning node. This process is mainly
based on the best grasp pose generated by HERoS. When the
manipulator VX300s reaches the 5cm in front of the target
grasp point, the velocity of the manipulator will become 1
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the normal speed, and it will slowly approach the target point.
This action is to protect the safety of the human interactors
during handover and to ensure that s/he will not change the
position of the original object or change the grasp pose due
to fear of being touched by the manipulator. After reaching
the target point, the gripper will close and detect whether
the object has been grasped correctly through the gripper
position.

C. Learning Grasp Choice using Deep RL

However, there is no available simulator for human-robot
hand-over tasks to boot-strap the training of deep RL. Also,
directly training the deep RL agent from scratch in the real
world to interact with humans is inefficient and has the
potential to cause physical injury. Therefore, we used the
collected human demonstration replay buffer with an offline
reinforcement learning algorithm to train another affordance
prediction model.

1) Deep RL Value Prediction: The algorithm we chose
was Double Q-learning (DDQN) [30], which is an off-
policy learning algorithm that can work with our pre-stored
experience replay buffer. The algorithm was designed to train
a Q-network with parameter θ to predict the future value
of each action through the reward signal. DDQN leverages
a separate target network with parameter θ

′
that gradually

update from θ to stabilize training process. We also use a
prioritized experience replay buffer to increase efficiency by
sampling important transitions to update the gradient. The
objective of the value network, Q, was to minimize the
Bellman error

Rt + γQ
θ
′ (st+1,argmax

a
Qθ (st+1,a))−Qθ (st ,at)

Our Q-network was based on a previous affordance pre-
diction network, with only one additional convolution layer
to output the Q-value. We also rotated the input images
according to every possible end-effector orientation to obtain
the Q-values for each possible action in the action space. The
full value map can be used as an affordance map to select
the best grasping point and rotation. The training process was
on a NVIDIA RTX2070 GPU for 5000 steps which took 3
hours.

V. HUMAN-TO-ROBOT HANDOVER EXPERIMENT

In this section, we demonstrate the effectiveness of our
approach with experiments. We compare the concepts and
effects of various human-to-robot handovers, including the
methods we propose.

A. Experimental Setup

We used a mobile manipulator platform, and put the ma-
nipulator system in a fixed area, prohibiting moving vehicles



Fig. 4. Grasp choice system architecture diagram. When the image is received, it will control the manipulator from two different perspectives for prediction,
selecting the perspective with a larger Q-value to perform the grasping, and receives the reward through the human label after the grasping is completed,
so that the agent can learn human preferences.

to increase the fairness of the experiment. Testers arbitrarily
handed over objects to the robot. During the experiment, we
tested the following 5 approaches, conducting 20 trials for
each object, and recorded the number of successes, and the
reason for failures.

Baseline I. Hand [19] + Object Poses [20] (DOPE &
MANO): This approach represented the intuitive method
of handovers, which predicted the pose of the object and
the human hand separately, where the algorithm excluded
the hand to grasp the target. The object pose prediction
component used the state-of-the-art DOPE model [20], and
the hand prediction component used the MANO model [19].
We combined the two and perform post-processing, and
finally selecting the grasp pose for the handover task.

Baseline II. Joint Reconstruction [21] (ObMan): As
prediction of the object and hand separately led to occlusion
problems, we tried to use the ObMan [21] model to directly
generate the pose of the object and the hand through joint
reconstruction in order to obtain their relative positions. The
reconstructed result was mapped to real-world coordinates by
coherent point drift methods [31], and the grasp pose was
generated through the algorithm to complete the handover
task.

Baseline III. Modified GG-CNN [5], [14] (Rosenberger
et al.): The approach described in Section. II was similar
to the goal we want to achieve. We used this method as
the baseline for this experiment and applied it to the D435
Camera and ViperX300s manipulator.

HERoS (Current approach): The proposed system
called HERoS was described in Section. IV, used RGB-D
images to predict the position and orientation that can be
grasped.

Teleoperation: In order to compare the success rate of
the manual control and the autonomously grasping methods,
we reported the results using a joystick to control the
manipulator to complete this task.

All approaches used the same process for evaluation.
During the experimental handover task, we performed 20
trials for each object, divided into four orientations: vertical,
horizontal, diagonally to the right, and diagonally to the
left. We performed 5 trials in each orientation using random
poses.

B. Evaluation Metrics

We used a set of indicators to evaluate the performance
of the system and analyze it by recording the number of
successes, failures and their reasons.

Hand Occlusion:
To ensure fairness of the comparison of various approaches

and quantitative data analysis, we captured the current frame
of the grasp execution and human label to obtain the oc-
clusion relationship between the hand and the object. We
categorized hand occlusion into either < 40% or > 40%.

occlusion =
(ob ject area ∩ hand area)

ob ject area



Fig. 5. Example capture of the current frame of the grasp execution for
labelling hand/object segmentation and estimating the occlusion ratio.

Success: How often the robot was able to successfully
take the object from the human’s hand safely.

Planning Fail: The robot failed to predict the object in
the human hand, resulting in an inability to grasp the object
but the human’s fingers were not touched.

Touched Fingers: Regardless of whether an object is
grasped or not, if the robot grasps the human fingers, it will
be considered a failure and recorded.

C. Results

We first compared with Baseline III. (Rosenberger et
al. [5]), which used a modified GG-CNN for grasping. 9
YCB objects with < 40% occlusion were evaluated, and
we replicated the success rate reported in [5] using our
manipulation platform. Our proposed affordance prediction
method achieved higher success rate, shown in Table. II.

In a separate experiment, Table. III further showed the
results of each of the main metrics in our system evaluation
process. We first reported that our hardware equipment is
sufficient to complete the handover task by teleoperation.
The success rate of other three benchmark methods (DOPE &
MANO, ObMan, and Rosenberger et al. [5]) were found de-
creased due to hand occlusions, but our method consistently
outperformed the success rate, suggesting the efficacy and
reliability of our method to severe hand occlusion (> 40%).

The overall success rate of our method for all objects
was 94%. It is noted that the success rate in Baseline III
decreased to 63%. This may be caused by the model for
detecting objects uses a YOLO V3 object detector [6], which
was prone to false positives with a complex background and
occlusion problems.

In the Baseline I. (DOPE & MANO) experiment, this
method was used to predict the positions of the objects
and fingers separately and then performed post-processing
calculations. Common problems were that the hand occludes
the objects and results in pose estimation errors. As the object
cannot be detected if there was an occlusion, the DOPE
model was only able to successfully predict the pose of the
object during the experiment when the fingers are placed on
the sides of the object.

Compared with the Baseline II. (ObMan) approach, the
method of using hands and objects for joint reconstruction
deals with the problem of not being able to detect objects.
However, during post-processing, the reconstructed 3D-point
cloud needs to be projected onto objects in real world

coordinates to obtain the grasp points, which often causes
errors such as skew.

VI. GRASP CHOICE EXPERIMENT

In the previous experiment V, we showed that the target
object can be successfully grasped, but some successful grasp
may violate some grasp choice constraints (such as social
convention). In this experiment, we further used deep RL to
learn the associations of raw image inputs and grasp choice
of human preferences. We set up our robot arm using the
model described in Section.IV-C and continuously updated
the model through the guiding of rewards given by users.

Fig. 6. There are Grasp Type I and Grasp Type II preferences for picking
objects. Grasp Type I is picking the middle of objects, and Grasp Type II
is picking the top of objects, using different perspectives to predict objects,
and finally selecting the grasping perspective preferred by humans.

A. Experimental Setup

We designed fined two grasp types that were suitable for
one of the two 6DoF grasp choices (front and top views), as
shown in Fig. 6. The robot arm moved to the initial positions
of the two grasp choices positions, and collected two input
RGB-D images. The inputs were then pre-processed with 4
planar rotations, resulting in 224×224×4×2 before feeding
into the deep model. The model predicted the Q-values of the
outputed 2×4 6DoF affordance map, and the best grasping
choice and orientation were selected. It is often to have a
successful grasp from both grasp choices. However, we have
set preferences for the robot to learn. We programmed the
model to learn that When the user was holding the bottom of
object, the robot should approach from the top to stay away
from the user’s finger’s. Noted that no human hand detector
nor human grasp classifier were used.



TABLE II
INDIVIDUAL OBJECT GRASPING RESULTS USING YCB DATASET IN COMPARISON WITH MODIFED GG-CNN [5], [14] BASELINE.

Hand Occlusion <40% Avg.

Method \Object SPAM Banana Lemon Strawberry Peach Pear Plum Mustard Sugar Success Rate
Baseline III. Modified GG-CNN 80% 75% 75% 90% 70% 85% 80% 85% 80% 80%
HERoS (Current approach) 95% 85% 80% 95% 90% 90% 90% 95% 80% 88.89%

TABLE III
COMPARISON OF THE SUCCESS RATE OF GRASPING FOUR OBJECTS

ACROSS APPROACHES.

Method \Hand Occlusion <40% ≥ 40%
Baseline I. Hand [19] + Object Poses [20] 62% 45%
Baseline II. Joint Reconstruction [21] 75% 61%
Baseline III. Modified GG-CNN [5], [14] 63% 50%
HERoS (Current approach) 94% 94%
Teleop 96% 91%

B. Training-stage

The deep RL model was trained while the robot interacted
with human users, and a total number of 100 handovers was
carried out. During each handover the reward given by the
user. For every trial where the handover task was completed,
it sampled from the prioritized reply buffer for training. 6-
10 points were given when the grasping pose matched the
human preference, 1-5 points were given when the pose
grasped the object but did not match the human preference,
and -5 points was given if the grasping fails or collision with
a finger.

C. Results for Known and Novel Objects

We carried out a pre-test and a post-test to evaluate the
grasp choice of the pre-trained DRL model before and after
the training with 100 handovers. We had 40 handovers
interacting with the robot arm, but without updating the
weights. All trials usded known objects shown in the training
stage. As mentioned the model generated 4 orientations ×
2 grasp choice, and the best grasp position and orientation
among the 8 affordance maps were selected. According to
the experimental results, we found that the overall success
grasp achieve 82.5%, and the probability for the preference
was 47.5%.

The same procedure was performed for the model trained
with deep RL. We tested 40 handovers for known objects
(shown in the training stage) and 20 handovers for novel
objects, which were not included in any of our training
dataset HERoS. After obtaining rewards from humans and
training for 100 trials, the average probability of grasping
using the human preference was 82.5%. This means that
the model can be updated with human-preferred grasping
through learning to achieve a more preferred grasp choice,
but a trade-off was found that the success rate (based on
predicted positions and orientations from the affordance
map) slightly decreased to 73.33%.

VII. CONCLUSIONS

Human-to-robot handover has many challenges. Consider-
ing the issues of complex backgrounds, occlusion and tra-

Fig. 7. The trajectory of the manipulator during the handover task. The
green line is the human-prefer trajectory, the red line is the human-prefer
but not comfortable trajectory, and the blue line is the non-human-prefer
trajectory.

jectory, we presented an end-to-end approach for handover.
We filtered out depth noise to increase the robustness of
the model. Without using separate predictions of the hands
and objects, we used RGB-D images as input to generate
affordance maps for selecting the grasp point, thus solving
the occlusion problem. Then we used deep reinforcement
learning to train our prediction model. After each grasping
trial, the user gives a point reward, allowing the robot to
learn the grasp choice preferred by humans.

In the future, we believe the same approach could also be
applied to many applications of human-robot collaboration.
In future work, we will 1) use off-line RL training to jointly
train affordance map with preference, and 2) use end-to-end
methods to modify the deep RL network architecture and
generate a close-loop 6D pose using RGB images, which can
make the manipulator trajectory more legible and friendly.
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